Top Dilepton Cross Section Measurement Summer 2003 -BLESSING Mircea Coca (University of Rochester, NY) on behalf of R. Eusebi, D. Goldstein, C. Grosso-Pilcher, E. Halkiadakis, C. Hill, A. Hocker, A. Ivanov, C. Mills, P. Tipton ### **Outline:** - Documentation - •Q&A - Event Selection - Plots to Bless - Results ### **Documentation** - Q&A web page - http://www.cdf.fnal.gov/internal/physics/top/run2dil/summer03/doc.html - Related CDF Notes - CDF6517 "Adding CMIO muons to the top dilepton cross-section" - CDF6579 "Optimization studies for the Top Dilepton Cross-Section Measurement" - CDF6591 "Determination of Drell-Yan backgrounds for the Run II Top Dilepton Cross-Section, summer 2003" - CDF6592 "Fake Lepton Backgrounds for the Summer 2003 Top Dilepton Cross Section" - CDF6590 "Acceptance and Background systematics for the Top Dilepton Cross-Section Measurement" - CDF6588 "A measurement of the tt cross-section using dileptons in the central and endplug detectors" - Previous talks at this meeting - Chris Hill, "Dilepton Acceptance", 06/19/2003 - Mircea Coca, "Dilepton Report", 07/10/2003 - Dave Goldstein, "Dilepton Cross-Section", 07/17/2003 - Monica Tecchio, "Preblessing", 07/24/2003 - Andy Hocker, "Dilepton Cross section Update", 07/31/2003 ### **Event Selection** - Require two leptons passing ID cuts - At least one of which is TIGHT - Plug electrons are always isolated - At most one central lepton (except CMIO) can be nonisolated - If leptons are same-species with 76 < M_{II} < 106 GeV - Require "Jet Significance" > 8.0 - $-\Delta\phi(MET, closest j) > 10^{\circ}$ - Corrected MET > 25 GeV - $\Delta \phi$ (closest I or j,MET) > 20° if MET < 50 GeV ("L" cut) - Two jets with $|\eta| < 2.5$ with corrected $E_T > 15$ GeV - Using jet corrections levels 1,2,3,5 - Require corrected H_T > 200 GeV - Require leptons to be opposite signed - Does not apply to PEM which do not have tracks ### **Q&A on Drell-Yan** - When determining the "outside" contribution how do you account for MET cut changing the shape of the mass spectrum? - Add new correction factors derived from MC $$N_{DY}(outside) = (N_Z^p - N_{tt}^Z) \cdot \frac{\mathbf{e}_{MET}^{lo} \cdot \mathbf{e}_{H_T}^{lo} \cdot \mathbf{e}_{2jet}^{lo} \cdot N_{lo} + \mathbf{e}_{MET}^{hi} \cdot \mathbf{e}_{H_T}^{hi} \cdot \mathbf{e}_{2jet}^{hi} \cdot N_{hi}}{\mathbf{e}_{MET}^Z \cdot \mathbf{e}_{H_T}^Z \cdot \mathbf{e}_{2jet}^Z \cdot N_Z}$$ ### **Drell-Yan** - When determining cut efficiencies from the MC for the "inside" contribution how do you correct for the MC underestimating the tails of the MET distribution? - Apply scale factors (Data/MC, MET > 25 GeV) to the predicted background (expected tt, WW subtracted) - These scale factors are determined for each jet bin and range from 0.3 to 5.8 with large uncertainties (low data statistics). - The average scale factor is 1.2 and a systematic is assigned such that all scale factors are consistent with this number ### **Drell-Yan Estimate** | Channel | 0j | 1j | ≥ 2j | H_T | OS | |------------|---------------|----------------|----------------|-----------------|-----------------| | ee | 8.2 ± 3.8 | 4.14 ± 1.8 | 1.0 ± 0.6 | 0.46 ± 0.29 | 0.46 ± 0.29 | | $\mu\mu$ | 1.2 ± 1.2 | 1.10 ± 1.0 | 0.74 ± 0.6 | 0.73 ± 0.56 | 0.73 ± 0.56 | | $\ell\ell$ | 9.4 ± 4.2 | 5.2 ± 2.3 | 1.8 ± 0.9 | 1.2 ± 0.7 | 1.2 ± 0.7 | Estimate in 2 jet bin increase by 0.5 events ### **Drell-Yan** ### Inside: We try to use data as much as possible and apply correction factors due the MC poor modelling of the high-met tails ### Results: | Channel | 0j | 1j | ≥ 2j | H_T | OS | |------------|---------------|----------------|----------------|-----------------|-----------------| | ee | 8.2 ± 3.8 | 4.14 ± 1.8 | 1.0 ± 0.6 | 0.46 ± 0.29 | 0.46 ± 0.29 | | $\mu\mu$ | 1.2 ± 1.2 | 1.10 ± 1.0 | 0.74 ± 0.6 | 0.73 ± 0.56 | 0.73 ± 0.56 | | $\ell\ell$ | 9.4 ± 4.2 | 5.2 ± 2.3 | 1.8 ± 0.9 | 1.2 ± 0.7 | 1.2 ± 0.7 | ### **Q&A** on fakes - An updated version of CDF 6592 was posted which addresses the questions - Why does NICEM fake rate die off at higher E_T? - Iso cut is a ratio, at higher E_T any electron looks nonisolated - Why are fakes from CEM are larger than PEM in 2 jet bin? - A counting error was found and fixed - H_T cut efficiency was derived again with a jet threshold of 20 GeV, instead of 15 GeV - No effect, still ~50 % - What is the source of predicted/observed discrepancy in j20 sample? - A mistake found which had to do with the fact that reclustered jets have the isolated electrons removed; now we see better agreement ### More on fakes - How to check the prediction of the fake rates in a statistically independent sample? - Before we used half of j20+j50+j70 to get the fake rates and make predictions in other half of the sample; this was considered "tautological" - Now we use jet50 to determine the fake rates and make predictions in jet20, jet70 and jet100 - Quote half of the largest difference (predicted observed) as a systematic uncertainty - The agreement is better and systematic errors are reduced # Fake predictions-Electrons | Category | Sample | Predicted | Observed | |----------|---------|-----------|----------| | CEM | Jet 100 | 3 ± 2 | 6 | | | Jet 70 | 18 ± 6 | 24 | | | Jet 20 | 10 ± 4 | 10 | | NICEM | Jet 100 | 12 ± 4 | 18 | | | Jet 70 | 59 ± 9 | 73 | | | Jet 20 | 8 ± 3 | 5 | | PHX | Jet 100 | 19 ± 6 | 27 | | | Jet 70 | 76 ± 13 | 64 | | | Jet 20 | 45 ± 10 | 32 | | PEM | Jet 100 | 61 ± 10 | 104 | | | Jet 70 | 330± 26 | 377 | | | Jet 20 | 278± 24 | 236 | ### Fake predictions - Muons | Category | Sample | Predicted | Observed | |----------|---------|-----------|----------| | IMUO | Jet 100 | 7 ± 4 | 4 | | | Jet 70 | 21 ± 7 | 11 | | | Jet 20 | 10 ± 4 | 17 | | NIMUO | Jet 100 | 2 ± 2 | 1 | | | Jet 70 | 9 ± 4 | 13 | | | Jet 20 | 15 ± 6 | 16 | ### Systematic uncertainties | Lepton Type | Assigned Systematic Error | |-------------|---------------------------| | CEM | 50% | | NICEM | 25% | | PEM | 35% | | PHX | 21% | | IMUO | 35% | | NIMUO | 25% | # Final Fake Estimate | | 0 jet | 1 jet | ≥ 2 jets | After H_T | After OS | |-------|-----------------|-----------------|-----------------|-----------------|-----------------| | CEM | 0.27 ± 0.03 | 0.17 ± 0.02 | 0.13 ± 0.01 | 0.07 ± 0.01 | 0.03 ± 0.00 | | NICEM | 1.47 ± 0.08 | 0.93 ± 0.05 | 0.59 ± 0.03 | 0.30 ± 0.02 | 0.15 ± 0.01 | | PEM | 4.33 ± 0.15 | 3.13 ± 0.15 | 1.29 ± 0.07 | 0.65 ± 0.03 | 0.65 ± 0.03 | | PHX | 0.99 ± 0.07 | 0.64 ± 0.06 | 0.25 ± 0.03 | 0.13 ± 0.01 | 0.06 ± 0.01 | | IMUO | 0.28 ± 0.03 | 0.27 ± 0.03 | 0.14 ± 0.01 | 0.07 ± 0.01 | 0.04 ± 0.00 | | NIMUO | 0.24 ± 0.03 | 0.20 ± 0.02 | 0.09 ± 0.01 | 0.05 ± 0.01 | 0.02 ± 0.00 | | TOTAL | 7.58 ± 0.19 | 5.35 ± 0.17 | 2.50 ± 0.08 | 1.26 ± 0.04 | 0.95 ± 0.03 | ### Tests of Fake Estimate - Assume same-sign dilepton events come from fakes - Compare the #SS events in different jet bins to the expected number from fakes - PEM do not have sign information they are excluded from the test | SS events | N = 0 jets | N =1 jets | N =2 jets | |--------------------------|------------|-----------|-----------| | Fake Prediction | 1.6 ± 1.3 | 1.1 ± 1.0 | 0.6 ± | | SS Observed | 2 | 3 | 2 | | Fake Prediction (no PHX) | 1.1 ± 1.0 | 0.8 ± 0.8 | 0.5 ± | | SS Observed | 0 | 0 | 0 | # Acceptance Summary - As shown before, 5% of the acceptance was coming from I+jets - To avoid any double-counting we explicitly require in the acceptance calculation HEPG dilepton events - Without the feed-down contribution of nonisolated categories decreases by only 1 %→ most of the non-isolated leptons are from W's # Final Acceptance Using Pythia ttopei the raw acceptance is: ``` (0.87 \pm 0.009) % ``` - Apply the scale factors due to the MC/data id efficiencies and for trigger efficiencies -> acceptance decreases by 10 % - Acceptance has increased from Winter by almost by a factor of 2, while keeping S/B high, S/B = 3.2 : 1 # Acceptance breakdown ### CDF Run II Preliminary | Dilepton categories | Relative
Acceptance (%) | S/B | |-----------------------------|----------------------------|-------| | CC both leptons isolated | 69 | 4.5:1 | | CC one lepton non-isolated | 10 | 4.4:1 | | CP/PP both leptons isolated | 20 | 1.5:1 | | CP one lepton non-isolated | 1 | 3.0:1 | ## Improvements breakdown Increase from Winter 2002 measurement: CDF Run II Preliminary | Addition | Acceptance increase (%) | |------------------------------------|-------------------------| | Plug electrons | 30 | | Drop isolation 2 nd lep | 22 | | Remove the mass cut | 11 | | Stubless muons | 20 | ### Dilepton Good Run List We use the final good run list specified by the top group ``` • L with minimal requirements = 125.8 pb⁻¹ ``` - Require good CMX = 109 pb^{-1} - Require good Si, no CMX req = 108 pb⁻¹ - Require good Si and CMX = 96 pb⁻¹ - We use the 12 pb⁻¹ of data reprocess with correct Si alignment → no changes to the observed events # Systematic Uncertainties: Signal Acceptance ### CDF Run II Preliminary | Source | Uncertainty (%) | |-----------------------------|-----------------| | Lepton ID SF + Trig. Effic. | 2.0 | | Jet Corrections | 5.6 | | ISR/FSR | 1.6 | | PDF's | 7.7 | | MC Generators | 3.9 | | Total | 10.6 | ### Systematic Uncertainties: Backgrounds | Background | Source | Uncertainty | |---------------|------------------|-------------| | | | (%) | | Z ? tt | 2-jet efficiency | 10 | | | Jet energy scale | 32 | | WW/WZ | MC Generator | 40 | | | Jet energy scale | 17 | | DY (ee, mm) | Method | 50 | | | Jet energy scale | 32 | | Fakes | Method | 21-50 | # FOR BLESSING # **Cross Section Table** | | Events per $125~{ m pb}^{-1}$ after all cuts | | | | |---------------------------|--|-----------------|-----------------|-----------------| | Source | ee | $\mu\mu$ | $e\mu$ | ll | | WW/WZ | 0.14 ± 0.06 | 0.09 ± 0.04 | 0.17 ± 0.07 | 0.40 ± 0.17 | | Drell-Yan | 0.53 ± 0.26 | 0.28 ± 0.14 | - | 0.81 ± 0.40 | | $Z \rightarrow \tau \tau$ | 0.07 ± 0.02 | 0.08 ± 0.03 | 0.17 ± 0.06 | 0.32 ± 0.11 | | Fakes | 0.31 ± 0.16 | 0.02 ± 0.01 | 0.14 ± 0.07 | 0.53 ± 0.27 | | Total Background | 1.05 ± 0.31 | 0.37 ± 0.15 | 0.48 ± 0.12 | 2.1 ± 0.5 | | tt | 1.65 ± 0.22 | 1.40 ± 0.19 | 3.50 ± 0.47 | 6.6 ± 0.9 | | Total SM expectation | 2.7 ± 0.4 | 1.8 ± 0.2 | 4.0 ± 0.5 | 8.7 ± 1.0 | | Run II data | 2 | 4 | 5 | 11 | ### Final Result $$\mathbf{s}_{tt} = 9.1 \pm 3.4(stat) \pm 1.2(syst) \pm 0.5(lum) pb$$ - Winter result: $13.2 \pm 5.9(stat) \pm 1.5(syst)$ - Theoretical prediction @ 175 GeV, E_{CM} = 1.96 GeV: ``` \sigma_{tt} = (6.7 + -0.5) \text{ pb} \text{ (hep-ph/0303085)} ``` ### Dilepton Cross Section Run II FOR BLESSING # **B-tagging Information** ### Expected tags: - Tag rate per top event: (55 +-1+- 5) % - $-N_{tagged}$ (expected) = (3.92 ± 0.24) events - $-N_{tagged}$ (observed) = 6 events One double tagged event (CMUP/CMP) ### Kinematic Plots I CDF Run II Preliminary $\int L dt = 126 \text{ pb}^{-1}$ ### Kinematic Plots II CDF Run II Preliminary $\int L dt = 126 \text{ pb}^{-1}$ ### Kinematic Plots III CDF Run II Preliminary $\int L dt = 126 \text{ pb}^{-1}$ # PR Event Displays # Backup Slides ### Fakes from b jets (I) - Believe NI leptons not faked by b's because of E_T cut on electron - Not many b's with electrons > 20 GeV - Et spectrum of electrons from b's in Wbb plotted at right - This plot is just to give a qualitative sense for this contribution - If this is true, shouldn't we start to see b's if we lower the cut? #### E_T Spectrum of Electrons from b ### Fakes from b jets (II) - Yes, and we do. - Non-Isolated fake rates (RED) go up as E_T cut on lepton is lowered, - At 20 GeV, rates are comparable to isolated lepton fake rates (BLUE). ### Fakes from b jets (III) Measured fake rates using the 8 GeV lepton samples stripped by the b-tag group - select events with a SECVTX tag - measure muon fake rate in electron triggered sample and vice-versa to avoid trigger bias | Lepton Ty | pe Fakes | Number of b-jets (+ tracks) | Fake Rate | |-----------|----------|-----------------------------|------------------------| | NICMUI | P 1 | 21,347 | 4.7×10^{-5} | | NICMU | 0 | 21,347 | $< 4.7 \times 10^{-5}$ | | NICMP | 1 | 21,347 | 4.7×10^{-5} | | NICMX | 0 | 21,347 | $< 4.7 \times 10^{-5}$ | | NICMX | 0 | 21,347 | $<4.7\times10^{-5}$ | | NICEM | 3 | 20,528 | 1.5×10^{-4} | To be compared with fake rates from generic jets: μ : $3x10^{-5}$ e: $2x10^{-4}$ HF fraction in W+jets to be ~1%? fake rates for b's would have to increase by a factor of 100 to be comparable to those from light quark jets. We do not see any evidence that this is the case. ### W+heavy flavor MC estimates - Use the numerous W+HF AlpGen+Herwig samples to estimate background per 100 pb⁻¹. - In 100 pb^{-1} : < 0.08 events ?? Can these be wrong by x25?? | atop16
W(μν)bb0p | 0.0022 evts | atop13
W(ev)cc0p | 0.0064 evts | |--------------------------|-------------|---------------------|-------------------------------------| | atop10
W(ev)bb0p(OLD) | 0.0066 evts | atop19
W(μν)cc0p | 0.0038 evts | | atop40
W(ev)bb0p(NEW) | 0.0035 evts | atop0w
W(ev)c0p | 0.007 evts | | atop41
W(ev)bb1p | 0.0046 evts | atop3w
W(μν)c0p | < 0.012 evts (0 evts pass all cuts) | | atop1w
W(ev)c1p | 0.0043 evts | atop4w
W(μν)c1p | 0.026 evts | # Changes to Event Selection - Extend jets to $|\eta| < 2.5$ - Winter analysis used $|\eta| < 2.0$ - Cutting on corrected instead of raw quantities - Use Jet Corrections 1,2,3,5 - Count jets with corrected $E_T > 15$ GeV - Winter analysis used raw E_T > 10 GeV - Use these jets to correct MET and calculate H_T - As was done in Run I, loose central leptons not required to be isolated - Does not apply to CMIOs - Trilepton category added - CMX muons no longer vetoed if have CMU/BMU stubs ### Acceptance Corrections Rescale lepton ID efficiencies to match those observed in Z data; Scale Factors applied: ``` - CMUP: 0.94 +/- 0.01 ``` - Apply track efficiencies - Decreases overall acceptance by 6.6% ### New Z Veto - Not so new: - CDF 3387 (H. Frisch) - Exploit the fact that MET from top is real while MET in Z+jets results from jet under-measurement - Expect that higher jet ET → higher jet fluctuation → larger MET. - Events with MET > 60 GeV ->jet lost in a crack ($\eta = 0$ or 1.1)-> use $\Delta \phi$ (MET, jet) to reject those events $$jetsig = \frac{MET}{\sqrt{\sum_{|\Delta f(met, jet) < 90|} (\vec{E}_T jet \cdot \frac{\vec{M}ET}{MET})}}$$ MET/ σ_{MET} ### Dilepton Categories - Events are required to have two leptons - At least one of which is TIGHT ISOLATED lepton - Trigger lepton is required to be TIGHT - Permuting TIGHT with LOOSE - 26 dilepton categories ee: 5 categories – eμ: 9 categories – μμ: 12 categories - 1 trilepton category | <u>TIGHT</u> | LOOSE | |--------------|-------| | CEM | PEM | | CMUP | CMU | | CMX | CMP | | PHX | CMIO | ### Data candidates ### 10 candidates: – ee: 2 events – eμ: 5 events $-\mu\mu$: 3 events ``` 1 CEM-CEM 1 CEM-PEM 2 CEM-CMX 1 CEM-CMIO 1 CEM-CMU 1 CMUP-CMP 1 CMUP-CMX ```